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1. Introduction

In the prequel (1) to the present paper the Fried approach to short-exposure imaging through

optical turbulence (2) was reanalyzed. The subject of that study was the short-exposure

modulation transfer function (MTF) that describes the mean behavior of a system acquiring

short-exposure images through turbulence. This MTF is commonly described as the product of a

system MTF and an atmospheric MTF. In the short-exposure case, the net MTF is expressed

using the equation,

MS(ω) =
4

π

∫
duW1(u)W1(u − ω) × exp

{
− [D`(D |ω|) + Dψ(D |ω|)]

2

}
, (1)

where u and ω are normalized two-dimensional vectors. u = x/D is a position vector in a

normalized aperture, while ω is an angular frequency vector of the plane perpendicular to the

main axis of propagation. ω = |ω| = Ω/Ω0, expresses angular frequency relative to Ω0 = D/λ

the maximum angular frequency (cyc/mrad) passed through an aperture of diameter D by

radiation of wavelength λ (see, e.g., Goodman (3)). W1 is a normalized aperture function,

WD(x) =

{
1, |x| < D/2;

0, |x| > D/2 ;
(2)

and D`(Dω) and Dφ(Dω) are amplitude and phase structure functions.

This short-exposure MTF is usually written as the product,

MS(ω) = M0(ω)MSA(ω), (3)

where, M0(ω) is the system MTF, given by,

M0(ω) =
4

π

∫
duW1(u)W1(u − ω) =

[
cos−1(ω) − ω

√
1 − ω2

]

π/2
W2(ω). (4)

The key contribution in the former paper involved the retention of a tilt-phase correlation term

that produced turbulence and diffraction related effects on the short-exposure correction to the

atmospheric MTF. The present paper improves upon this expression by exploring further into the

space of a fourth-order integral introduced in the previous analysis. Further investigation into the

behavior of this integral has revealed a new dependence.
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To describe this new dependency, we first consider Fried’s original formulation of the

short-exposure atmospheric MTF (SAMTF). According to the standard approach, the SAMTF is

itself formed as a correction to the long-exposure atmospheric MTF (LAMTF), which is written,

MLA(ω) = exp{−(2.1X ω)5/3}, (5)

wherein the factor X = D/ro represents the ratio of the system entrance pupil diameter to the

Fried coherence length (2), which for homogeneous Kolmogorov turbulence may be expressed as,

ro = 2.1 × 1.437
(
k2 LC2

n

)
−3/5

, (6)

with k = 2π/λ the optical wavenumber, L the path length, and C2
n [m−2/3] the refractive index

structure parameter. From the LAMTF, the SAMTF has been expressed as a perturbation,

MSA(ω) = exp{−(2.1X)5/3 [ω5/3 − V (Q, X)ω2]}, (7)

where V (Q, X) was modeled as a constant in Fried’s original analysis (denoted as α), taking

values of either 1/2 or 1. In the re-analysis of Tofsted (1), V (Q, X) was shown to vary with both

X and a diffraction-related parameter Q = D/P , where P = (λL)1/2 is a Fresnel scaling

parameter. Together, the X and Q parameters account for turbulence and diffraction influences

on V .

The meaning of this short-exposure correction derives from Fried’s observation that

long-exposure imaging averages over all phase aberrations in the system aperture, but when

performing short-exposure imaging the tilt of the incident wave may shift the centroid of a given

object point, but would not affect its image clarity. The correction factor, V (Q, X)ω2, removes

this tilt effect, which accounts for both a tilt-variance effect and a tilt-phase correlation term,

V (Q, X) = N(Q, X) − 1.0433G(Q). (8)

where N(Q, X) represented the tilt-phase term, and G(Q) represented the diffraction-influenced

tilt-variance effect.

V (Q, X) was approximated in the prequel using the analytic form,

V (Q, X) ≈ A +
B

10
exp

[
−(x + 1)3

3.5

]
, (9)
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where x = log10(X), and functions A and B were modeled as functions of Q, using a

log-variable version, q = log2(Q):

A =

{
0.840 + 0.280Σ(qa), qa = 0.51 (q + 1.50); q ≤ −1.50

0.840 + 0.116Σ(qb), qb = 1.35 (q + 1.50); q ≥ −1.50
(10)

B = 0.805 + 0.265Σ(qc), qc = 1.45 (q − 0.15), (11)

where Σ(z) = [exp(z) − 1]/[exp(z) + 1] is a sigmoidal function. The behavior of V (Q, X) is

plotted in figure 1 which is a reproduction of figure 4 of Tofsted (1).

Figure 1. Intercomparison of V (Q, X) results for varying Q as a

function of X from the prequel.

Subsequent to the publication of Tofsted (1), questions arose regarding the validity of the

V (Q, X) function and the implication that super-resolution results were obtained (4). Review

and reinvestigation have confirmed elements of Charnotskii’s critique and have led to the current

paper.

In the reinvestigation, it was first noted that equation 1 could be formed through a combination of

equations 28, 29, and 56 of Tofsted (1), but the structure functions within the exponential are

positive definite, representing mean squared quantities. However, if V (Q, X) exceeds unity MSA

will exceed unity at high ω, as it does when X < 2 < Q (see figure 1).

3



The calculation of V (Q, X) primarily relied on evaluation of N(Q, X) based on the model,

MT (Q, X, ω) ≈ exp
[
(2.1X)5/3 N(Q, X)ω2

]
, (12)

where MT (Q, X, ω) was given by the integral relation (equation 49 of Tofsted (1)),

MT (Q, X, ω) =
4

π

∫
du

W1(u − ω)W1(u)

M0(ω)
exp

{
+ F (D, u, ω)

}
, (13)

F (D, u, ω) =
32

π

∫
dua W1(ua) [ua · ω]

× (+Dφ[D (u − ua − ω)] −Dφ[D (u − ua)]) . (14)

Due to circular symmetry, MT only depends on the magnitude ω = |ω|. That is, one may always

orient ω along the x-axis without loss of generality.

In the prequel, based on the model given by equation 12, and based on figure 3 of Tofsted (1) that

appeared to show ω2 dependence of the exponent, it was believed to be unnecessary to evaluate

equation 13 at every value of ω in order to evaluate a single point V (Q, X). Rather, a single

evaluation of MT (Q, X, ω) could be performed for each Q and X combination, at a

“characteristic” value of ω, call it ωK . N(Q, X) could then be evaluated for this computed MT

using the equation 12 model and the value of ωK . The value of ωK was chosen so that it would

have the greatest impact on the overall curve, and thus the point MS(ωK) = 1/2 was selected to

model the behavior in the immediate vicinity of the knee of the complete MTF curve.

This choice, it turns out, had one useful feature, and one detrimental feature. The useful feature

is that while (as I will show) we must abandon the previous model in general, as an approximation

it is actually rather good. When compared with the newer model described further along in the

current paper, it exhibits only a third of the error of the original Fried equation. The detrimental

feature is that as the X parameter increases, the knee of the MS curve falls at ever smaller values

of ω. Thus the evaluation point is at smaller ω, and if (as we shall find) the N function is a

varying function of ω, then the correlation between ωK and X may produce unusual effects.

A further reason for restricting the computations to an evaluation at ωK was a numerical precision

issue with evaluating equation 14 and its effect upon introducing this result in the exponential

argument in equation 13. The phase structure function is modeled as,

Dφ(D u) = 2 (2.1X)5/3 u5/3 α(Q u), (15)
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where α(Q u) is a diffraction related function that varies smoothly between 1/2 and 1 over an

8-decade range of its argument (see Tofsted (1)). However, the X5/3 factor can produce

exponential arguments exceeding 105 in equation 13. In the prequel the integration process was

handled on-the-fly, which we found to be computationally intensive. To resolve the question of

how N varies as N(Q, X, ω), this integration routine was completely reworked, as described in

section 2. Then, in section 3 the updated V (Q, X, ω) function is considered, and its behavior is

modeled in an approximate analytical form, as previously, but now as a function of three

variables. The resulting behavior of the new functional form is considered in section 4.

2. Revised Integration Technique

To explore the variations of V (Q, X, ω) across the effective spectrum of Q, X, and ω we consider

Q values extending from 1/16th through 16 by factors of 2 (9 points), X from 0.1 to 103 in steps

of 1/10th of a decade (41 points), and ω from 0.01 through 0.99 plus a few extra points at small ω

(103 points). In sum, the required number of calculated points increased by a factor of over 100.

Hence, a new integration technique was needed that was both faster and more accurate.

The main problem, of course, was the factor (2.1X)5/3 = S5/3 in Dφ inside the F double integral

of equation 14. To deal with this situation, let us first rewrite equation 15 as,

Dφ(D u) = 2 (2.1X/Q)5/3 ϕ(Qu), (16)

where,

ϕ(x) = x5/3 α(x). (17)

Using this functional form for the phase structure function, equation 14 can be rewritten,

F (D, u, ω) =
32

π

∫
dua W1(ua) [ua ·ω]

× (+Dφ[D (u − ua − ω)] −Dφ[D (u − ua)])

=
64

π
(2.1X/Q)5/3

∫
dua W1(ua) [ua · ω]

× (+ϕ[Q (u− ua − ω)] − ϕ[Q (u− ua)])

= (2.1X)5/3 F̃ (Q, u, ω x̂). (18)

This first step allows us to factor out (2.1X)5/3 from the inner double integral. The function F̃

can then be tabulated for |u| < 1/2, 0 < ω < 1 (where radial symmetry always permits us to
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orient ω along the +x axis), and Q, thereby reducing the problem of evaluating equation 13 from

a four-dimensional integral to a two-dimensional integral plus an interpolation on a

multi-dimensional look-up table of F̃ (...) results. This greatly increases the calculation speed.

The remaining major problem due to the X5/3 factor is solved by the addition of an iterative step

during the computation of the outer double integral. The problem is that the MT integral must be

computed with (2.1X)5/3 F̃ (...) inside the exponential factor. And while F̃ evaluates to a

quantity less than 10, the X5/3 factor can be up to 105. And yet, once MT is evaluated, the

function N is evaluated by taking the log of MT and dividing out the same X5/3 factor:

N(Q, X, ω) =
ln [MT (Q, X, ω)]

(2.1X)5/3 ω2
. (19)

Thus the (2.1X)5/3 factor appears to cancel, but cannot simply be removed from the outer double

integral prior to actually evaluating MT . Nevertheless, one can write the MT integral in the form,

MT (Q, X, ω) =
4 exp(+A)

π

∫
du

W1(u − ω)W1(u)

M0(ω)
exp

{
+ F (D, u, ω) − A

}

= MU (Q, X, ω) exp(+A), (20)

such that,

N(Q, X, ω) =
ln [MU (Q, X, ω)] + A

(2.1X)5/3 ω2
, (21)

where a constant such as exp(+A) may always be both multiplied and divided from a quantity.

This is necessary because the resolution limit of double precision does not extend to exp(105), yet

a priori we do not know how much to initially subtract inside the exponent. And when we

actually try to evaluate the result numerically, due to the double precision limitation we only

know that the result has gone out of its proper bounds, but not by how much. We must therefore

follow an iterative procedure to find an appropriate offset. Thus we initially set A = 0 and

attempt the numerical computation. Each time the algorithm produces an out-of-bounds result, A

is incremented by +40, and the numerical integration routine is run again. The integration is

repeated, adjusting A, until such point that A is adjusted so that the numerical integration result

produces a meaningful answer in the double precision logic of the routine.

Given both the tabulated and interpolated inner integral approach, along with the outer integral

adjusted by the offset A, a complete set of V (Q, X, ω) values could be computed. Results were

computed over the ranges of Q, X, and ω variations indicated at the beginning of this section.

This range of the parameters covers the majority of the dynamic range of variations for most

propagation conditions and optical systems used in terrestrial imaging scenarios.
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Figure 2 illustrates the two extremes of the data set by plotting two sets of results for different x

values as functions of ω for Q = 1/16 and 16. (Only half the curves are labeled.) From these

curves, the values of V (Q, X, 0) appear to be a function of Q alone. And apparently

V (Q, X, 1) ≈ V (Q, X, 0) to within the level of accuracy of the calculations. Also, families of

curves developed for different Q values exhibit similar features, indicating that further analysis

(in the following section) may be capable of modeling this behavior using fewer than the 38,007

elements in the calculated sample database. The result of said analysis is a fitting function using

a series of equations that produces estimates of V (Q, X, ω) that are virtually identical to the

computed results.

Figure 2. Plots of V (Q, X, ω) for q = log2(Q) = +4 and −4.

These results can be compared with the behavior of the previous analysis results seen in figure 1.

A critical difference is that unlike the previous analysis, V (Q, X, ω) does not degrade with

increasing X as did V (Q, X). The reason the previous analysis showed decreasing V (Q, X)

with increasing X was because the evaluation point, ωK , was a decreasing function of X.

3. Analysis of V (Q,X, ω) Parameterization

The analysis process whereby the V (Q, X, ω) dependence was determined involved a lengthy

sequence of analytical results to unpack the general behavior of the function into a sequence of

similar behaviors. The first stage of this reduction involved the division of the function into two

7



segments: the base segment, designated V0, apparently a function of only Q, and V∆, a variable

portion dependent on Q, X, and ω:

V (Q, X, ω) = V0(Q) + V∆(Q, X, ω). (22)

To model several of the resulting functions involved in characterizing these two constituent

functions let us introduce a sigmoidal function,

Σ(x) =
[exp(x) − 1]

[exp(x) + 1]
=

[exp(+x/2) − exp(−x/2)]

[exp(+x/2) + exp(−x/2)]
= −Σ(−x). (23)

We then employ a scaled and shifted form of this function:

S(x, A, B, C, D) = A + B Σ[C (x − D)]. (24)

We shall also frequently need a spliced version of this function in which the exponential decays

on either side of the x = D center appear to exhibit different forms, designated,

SS(x, A, B1, B2, C1, C2, D) =

{
A + B1 Σ[C1 (x− D)], x ≤ D;

A + B2 Σ[C2 (x− D)], x ≥ D.
(25)

Although this form is written with six free parameters, in actuality, to ensure continuity of the first

derivate at the transition point, one degree of freedom is absorbed, whereby B1 C1 = B2 C2.

To model the baseline value we use,

V0(Q) = SS[log2(Q), 0.870, 0.370, 0.085, 0.355, 1.545, −1.00]. (26)

Using this equation, the computed V results based on the integration technique described in the

previous section were rendered into V∆ by subtracting V0(Q). Next, it was recognized that the

different families of V∆ results could be better compared by normalizing each set of results at

different Q values by dividing through by the maximum value of V∆ in each subset. This

maximum value invariably occurred at the maximum X value used (X = 103) at the peak point

ωP (Q, X). This maximum V∆ (VM ) is given approximately by the relation,

VM (Q) = S[log2(Q), 0.213, 0.072, 1.525, 0.150]. (27)

Both V0(Q) and VM (Q) are plotted in figure 3 versus database derived results.
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Figure 3. Plots of V0(Q) and VM(Q).

Division by VM (Q) produces sets of similar functions at each Q, V̂∆ = V∆/VM . Figures 4 and 5

compare two sets of such functions.

Figure 4. Plots of V̂∆(Q, X, ω) for Q=1/16.
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Figure 5. Plots of V̂∆(Q, X, ω) for Q=16.

Both plots illustrate sets of curves of similar shape. Both figures include a plot of the path

corresponding to the position and height of the peak of each curve as a function of increasing X

for that value of Q. Apparently the tracks of these peak curves are nearly identical, but different

points along the paths are associated with different X values. As an illustration, figure 6 plots the

ω components of these curves for various Q values as functions of x = log10(X) [ωP (Q, X)].

To model the behavior of ωP , the behavior of ωP (Q = 1, X) may be used as the main guide

function and shifted in x = log10(X) by a function dependent on Q alone:

ωP (Q, X) = ωP [Q = 1, X/Xω(Q)]. (28)

ωP (Q = 1, X) = SS [log10(X), 0.360, −0.133, −0.322, 3.450, 1.424, 1.320]. (29)

log10[Xω(Q)] = S[log2(Q), −0.004, 0.091, 1.750, −0.05]. (30)

The resulting curve fit for ωP (Q, X) is shown for the Q = 1 case in figure 7. Several shifted

versions of other data sets based on the Xs(Q) curve are also plotted.
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Figure 6. Plots of ωP (Q, X) for various Q values.

Figure 7. Plots of ωP (Q = 1, X) for various x-shifted curves based on the

ωP (Q = 1, X) parametric curve.

11



Next, consider the vertical component of the peak curve. Define this function as

VP (Q, X) = V∆(Q, X, ωP ). The behavior of VP (Q, X) is illustrated for several values of Q in

figure 8. The salient features of these plots are that there is a similar shift in x = log10(X)

between the different curves along with a vertical scale factor.

Figure 8. Plots of VP (Q, X) for various values of Q.

To model this behavior let us again characterize VP (Q, X) by first considering the peak function

for Q = 1:

V1(x) = VP (Q = 1, x) = SS(x, 0.122, 0.044, 0.082, 4.257, 2.300, 1.167). (31)

Using this baseline function we rescale and shift it according to:

VP (q, x) = AR(q)V1[x− xP (q)], q = log2(Q), x = log10(X); (32)

AR(q) = S(q, +1.051, +0.3565, +1.600, +0.150); (33)

xP (q) = S(q, +0.005, −0.0880, +1.550, −0.150). (34)
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Given the peak value function, VP , and the peak location, ωP , one may then approximately model

the functional dependence of V̂ (Q, X, ω). However, the shape of the resulting function must still

be parameterized by indexing this shape relative to the normalized peak value,

UP (Q, X) = VP (Q, X)/VP (Q, 1000).

To model the shape of these functions, a scaled set of Legendre polynomial functions was

employed. Let P0(u) = 1, P1(u) = u, and use equation 5.5.1 of Press et al. (5):

(n + 1)Pn+1(u) = (2n + 1)uPn(u)− nPn−1(u). (35)

The u variable of Legendre polynomials ranges between -1 and +1, where it is evenly weighted.

However, because 0 ≤ ω ≤ 1, we need to introduce new functions,

Ln(ω) =
√

2n + 1 Pn(2ω − 1), (36)

such that, ∫ 1

0

Lm(ω)Ln(ω) dω = δmn, (37)

expresses the orthonormal nature of the resulting rescaled functions.

In addition, the function expansion in weighted Lm functions may be reduced to fewer terms if

the interval (0...1) in ω is divided into two subsections (0...ωP ) and (ωP ...1). Then, the

expansion of V̂∆(Q, X, ω) may be expressed as,

V̂∆(Q, X, ω) ≈
n=N∑

n=0

C2n[UP (Q, X)] L2n

{
ω

2ωP (Q, X)

}
, ω ≤ ωP ;

V̂∆(Q, X, ω) ≈
n=N∑

n=0

D2n[UP (Q, X)] L2n

{
1 − [1 − ω]

2 [1 − ωP (Q, X)]

}
, ω ≥ ωP . (38)

This division is significant because only even order scaled-Legendre functions are needed, and

also at ω ≥ ωP fewer significant terms are needed. In particular, the series has been truncated at

N = 6. The constants C2n are then produced by integrating the scaled functions multiplied by

each of the rescaled Legendre functions.

Though some scatter appears when performing these calculations, the similarities between the

functions at different Q values are evident. These results are plotted in figures 9 and 10 for the

C2n and D2n coefficients.
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Figure 9. Plots of Cm = C2n expansion coefficients and parametric curve

fits to the results.

Figure 10. Plots of Dm = D2n expansion coefficients and parametric

curve fits to the results.
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For the C2n plots, several coefficients appear to exhibit hyperbolic dependence, while of the D2n

coefficients only D0 appears to exhibit hyperbolic behavior. These hyperbolic forms were

modeled using the fitting function,

Cm = am (UP − em) + bm
√

(UP − em)2 + cm + dm. (39)

The curves plotted in figures 9 and 10 are based on this equation. Coefficients used in these

equations are detailed in tables 1 and 2. Table 1 details the coefficients associated with the

hyperbolic cases. The remaining coefficients are considered linear in UP , where the same model

terms are used, but where constants bm, cm, and em are all set to zero.

Table 1. Hyperbolic Model Cm and Dm Coefficients.

Coefficient am bm cm dm em

C0 20.1020 19.5598 0.0028 0.5700 1.0500

C2 2.1140 2.4810 0.0041 -0.3503 0.9997

C4 -0.3391 -0.3361 0.0050 0.0051 0.8141

C6 -0.3533 -0.3721 0.0000 0.0131 0.9201

C8 -0.3675 -0.3987 0.0001 0.0155 0.9632

D0 6.4460 5.9010 0.0006 0.5810 0.9999

Table 2. Linear Model Cm and Dm

Coefficients.

Coefficient am dm

C10 0.01013 -0.00448

C12 0.00558 -0.00256

D2 -0.30465 -0.00055

D4 0.03405 -0.00396

D6 -0.01269 0.00486

D8 0.00429 -0.00153

D10 -0.00444 0.00191

D12 0.00055 -0.00016

The root mean square (RMS) error resulting from the use of these coefficients for V results

computed at 9 Q values, 41 X values, and 105 ω values was 0.006795. This result was further

improved by passing the resulting model into an algorithm utilizing a Stochastic Parallel Gradient
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Descent (SPGD) approach of Vorontsov and Sivokon (6). The result of running this algorithm

tended to optimize the coefficients, reducing the overall RMS error described above to 0.002728.

Based on these results we must redefine the various equations previously presented. These are

expressed using,

V0(Q) = SS [log2(Q), 0.8785, 0.3726, 0.0849, 0.3733, 1.5700, −0.9844]; (40)

VM (Q) = S[log2(Q), 0.2205, 0.0696, 1.5387, 0.1502]; (41)

ωP (Q = 1, X) = SS[log10(X), 0.3506, −0.1332, −0.3177, 3.4505, 1.4065, 1.2738]; (42)

log10[Xω(Q)] = S[log2(Q), 0.0040, −0.0877, 1.7450, −0.0502]; (43)

V1(x) = VP (Q = 1, x) = SS(x, 0.1216, 0.0438, 0.0823, 4.2957, 2.3225, 1.1787); (44)

AR(q) = S(q, +1.0657, +0.3521, +1.5964, +0.1498); (45)

xP (q) = S(q, −0.0050, +0.0893, +1.5499, −0.1500). (46)

With these changes, the results in tables 1 and 2 are replaced by the coefficients of tables 3 and 4.

The primary difference between these coefficients and the original parameter values appears to be

due to the restrictions on the range of the Q and X parameters to the intervals 1/16 – 16 and 0.1 –

103, respectively. The SPGD method appears quite capable of optimizing the fitting properties if

presented with a coefficient set that is fairly close to the optimal settings. On the other hand, if

the SPGD method is supplied with an initial coefficient set that is initially a rather poor fit to the

available data, then SPGD does very poorly in improving the fit to the data.

Table 3. SPGD Modified Hyperbolic Model Cm and Dm

Coefficients.

Coefficient am bm cm dm em

C0 20.2124 19.6324 0.0031 0.5751 1.0686

C2 2.1118 2.4928 0.0042 -0.3515 0.9808

C4 -0.3413 -0.3355 0.0051 0.0051 0.7996

C6 -0.3529 -0.3769 0.0000 0.0131 0.9041

C8 -0.3696 -0.3982 0.0000 0.0153 0.9504

D0 6.4372 5.8919 0.0005 0.5788 1.0341
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Table 4. SPGD Modified Linear

Model Cm and Dm

Coefficients.

Coefficient am dm

C10 0.01009 -0.00452

C12 0.00550 -0.00257

D2 -0.30273 -0.00057

D4 0.03335 -0.00413

D6 -0.01271 0.00485

D8 0.00425 -0.00154

D10 -0.00452 0.00186

D12 0.00055 -0.00019

4. Results

The new model of V (Q, X, ω) allows us to compare the new results with the previous model

results. Perhaps the most telling examples are comparisons of the same cases presented in

figure 6 of Tofsted (1), reproduced here as figure 11. The new results are plotted in figure 12

below. In the prequel, several cases showed “super-resolution” characteristics by exceeding unity

at ω values greater than 0.7. The new curves never violate the diffraction limit, as argued by

Charnotskii (4), but also produce increased values in the functions at intermediate frequencies

0.3 < ω < 0.7 because V (Q, X, ω) is larger at intermediate ω values than it is at the knee of the

curves.

The difference between the prequel paper’s super-resolution results and the diffraction limited

results obtained here are also illustrated in figure 13 for a presumed worst case fit of the previous

analysis. That scenario is Q = 4 and X = 2. This combination produced MSA(ω) > 1.25 at

ω > 0.95 in the previous analysis. As the figure shows, the prequel’s V = 1.0395 produces a

function closer to the true MTF than the α = 1.0 Fried case up until ω = 0.8. The new function

is virtually identical to the calculated curve. Hence, the prequel’s functional form still provides a

useful approximation, even though it violates the diffraction limit at extremely high frequency

(ω > 0.87).
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Figure 11. Atmospheric MTF’s plotted for Q cases (a) 1/2, (b) 1, (c) 2, and

(d) 4, respectively, from the prequel paper where

super-resolution conditions were predicted where results

exceeded 1.0.

The various models can be compared against the complete set of short-exposure computed MTF

values, i.e., the calculated V (Q, X, ω) data set. To produce a weighted sum squared error, the

sum of the weighted squared difference between an estimate and the computed result, ω δM2, can

be compared for five different methods of estimating the MTF. These estimation techniques are:

(1) Fried’s far-field case (α = 1/2), (2) Fried’s near-field case (α = 1), (3) a Fried best-fit case

(based on either α = 1/2 or 1, depending on which case best fits the data), (4) the prequel’s

analytical model V (Q, X), and (5) the current paper’s extended analytical V (Q, X, ω) model.

For each case the error between the computed MTF and the estimated result is computed (call it

δM). The root mean squared error was then normalized according to,

RC =
√∑

i

δM2
i ωi ∆ωi/

∑

i

ωi ∆ωi, (47)

where C is the case number. The resulting five cases produced RMS errors N1 = 0.01409,

N2 = 0.03518, N3 = 0.01079, N4 = 0.00643, and N5 = 0.00022. Clearly the worst case is the

Fried α = 1/2 far-field case. Of course, the cases studied focused on the transition range from

small to large Q values. If Q were extremely small, the α = 1/2 case might be the best choice.
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Figure 12. Atmospheric MTF’s plotted for Q cases (a) 1/2, (b) 1, (c) 2, and

(d) 4, respectively. Super-resolution cases of the prequel model

are eliminated due to high frequency decay.

However, even when permitting a choice between the near-field and far-field cases, the Fried

model exhibits significantly greater error than the case 4 results using the prequel’s V (Q, X)

function. And of course, the case 5 model is obviously virtually equivalent to the full

multi-dimensional integral of equations 13 and 14, being ∼ 30 times better than the prequel’s

performance.

5. Conclusions

The analysis performed in this paper completes a research arc beginning nearly a decade ago with

the publication of Tofsted (7). For many years researchers (c.f., MacDonald and Cain (8), and

Dunphy and Kerr (9)) have alluded to weaknesses in Fried’s (2) short-exposure model. The path

of this arc led through Tofsted (1) which highlighted the missing term in Fried’s approach. This

paper completes the arc, following Charnotskii’s (4) observation that the theory cannot support

super-resolution, and resulted in a new understanding of the angular frequency in the V function.

As before, an analytical expression was derived to describe the new dependence, though involving

considerably more detail. In the process the degree of accuracy of the new method was
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Figure 13. Atmospheric MTF’s plotted for Q=4 and X=2 comparing

Fried’s model (red dashed) for <alpha>=1, Tofsted approximate

model (blue dashed) for V=1.0395, and full model (black solid)

results, along with system MTF (dashed green) curve..

compared, along with the prequel version and Fried’s original analysis with the more extensive

calculations, revealing that the new method has virtually no error, while the prequel method has

one-third the error of Fried’s original method using α = 1.

These new results can also be directly coupled to the results of a recent paper (10) that studied the

influence of path-varying turbulence strength for two classes of path geometry: slant path over

flat terrain and flat path over valley terrain. In both cases it was found that changes in the

behavior of the wave and phase structure functions with path varying turbulence could be

parameterized through scaling functions based on path geometry to modify the X and Q

parameters of these structure functions. Since the results of this paper continue to use the same

structure functions, the same techniques may be applied to adjust the X and Q parameters of the

new MTF model to account for path-varying turbulence.

The key missing element of the current and previous studies has been and is the lack of

consideration of inner scale influences on the structure functions. However, since the focus of

these studies has been the impacts of turbulence on aided optical systems, in most cases inner

scale effects are minor. In contrast, outer scale effects may be significant on the angle-of-arrival

variance, but only for larger aperture optics. For systems considered here that are less than
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10-inches in aperture diameter, the effects of outer scale on angle-of-arrival variance will be less

than 10% (see e.g., Tofsted (10), which is typically less (under most conditions) than the

uncertainty in the measurement of C2
n itself.
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